

Turning CO₂ into energy storage

first-ever Ionic Liquid sorbent Methanol synthesis In order To Enable over 80% yield

Technology:

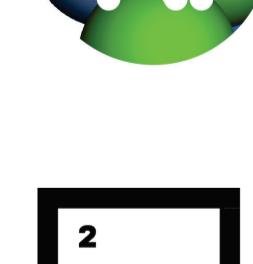
- Uses ionic liquid sorbents to capture and convert CO₂
- Achieves over 80% methanol single pass yield, surpassing the 60% state of the art

- Features a 3D-printed reactor for improved fluid dynamics

Impact:

- Enables low-pressure methanol synthesis from biogas-derived CO₂
- Positions wastewater plants as potential biorefineries
- By 2030, implement small-scale CO₂ and electrical energy storage and utilization systems

Total Budget € 3 578 568.06


Duration 01.2025 | 12.2027

EU contribution € 2 497 753.75

Coordinated by

National Institute of Chemistry,

Slovenia


NATIONAL INSTITUTE
OF CHEMISTRY

ARISTOTLE
UNIVERSITY
OF THESSALONIKI

global omnium

Funded by
the European Union

Project funded by

 Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Swiss Confederation

Federal Department of Economic Affairs,
Education and Research EAER
State Secretariat for Education,
Research and Innovation SERI

The ILIMITED project is funded under Horizon Europe Grant Agreement n°101192964.