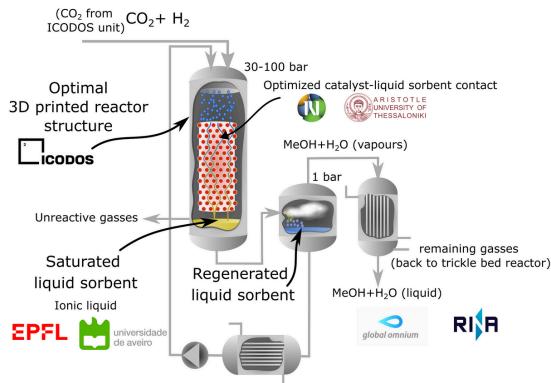


## Turning CO<sub>2</sub> into energy storage




**first-ever Ionic Liquid sorbent Methanol synthesis In order To Enable over 80% yield**

### OVERVIEW

The **ILIMITED** project aims to revolutionise the way we convert CO<sub>2</sub> into methanol by developing an innovative and economically viable process suitable for **small, decentralised applications**. Using novel liquid sorbents and advanced catalysis, ILIMITED aims to achieve efficient CO<sub>2</sub> capture and local methanol production, especially in **wastewater treatment plants** and **sustainable fuel use**.

### INNOVATIVE TECHNOLOGY



- **Ionic liquid sorbents** - capture & convert CO<sub>2</sub>, overcome current methanol yield limitations
- **>80% methanol single pass yield** - outperforms the 60% state of the art
- **In-situ methanol and water removal** to drive reaction equilibrium
- **3D-printed reactor** - improved fluid dynamics and localized use
- **Dual-use methanol** - green fuel & carbon source in wastewater treatment



**Funded by**  
the European Union

#### Project funded by



Swiss Confederation

Federal Department of Economic Affairs,  
Education and Research EAER  
State Secretariat for Education,  
Research and Innovation SERI



## KEY OBJECTIVES

- Develop & test **novel low-viscosity and low-vapour-pressure liquid sorbents**
- Demonstrate  $\text{CO}_2 \rightarrow$  methanol conversion with **over 80% yield**
- Use **machine learning & Bayesian optimisation** to improve process performance
- Enable **decentralised methanol production** from distributed  $\text{CO}_2$  sources
- Integrate methanol utilisation into **wastewater denitrification** to close the loop of local carbon valorisation

## EXPECTED IMPACT

- **Reduce greenhouse gas emissions** from distributed  $\text{CO}_2$  sources
- Enable **low-pressure methanol synthesis** using biogas-derived  $\text{CO}_2$
- Position **wastewater treatment plants as biorefineries**
- Foster a **circular economy** across the energy, waste & water sectors
- Introduce small/local-scale  $\text{CO}_2$  & energy storage systems by 2030

## TIMELINE & FUNDING

**Duration** 01.2025 | 12.2027

**Total Budget** € 3 578 568.06

**EU contribution** € 2 497 753.75

## CONSORTIUM

### Coordinator:

National Institute of Chemistry,  
Slovenia



Turning  $\text{CO}_2$  into energy storage



Funded by  
the European Union

### Project funded by

 Schweizerische Eidgenossenschaft  
Confédération suisse  
Confederazione Svizzera  
Confederazione Svizzera

Federal Department of Economic Affairs,  
Education and Research EAE  
State Secretariat for Education,  
Research and Innovation SERI

