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1 Executive summary 

1.1 Description of the deliverable content and purpose 

This deliverable presents the validation of three computational models, ILBERT (ai4solvent), COnductor like 

Screening MOdel for Realistic Solvents (COSMO-RS), and GNN-IL (graph neural network for ionic liquids) 

used for screening solvent candidates within the ILIMITED project (Work Package 1). The overarching goal 

is to identify solvents capable of selectively absorbing methanol and water under the demanding conditions 

of the CO₂ hydrogenation reaction, particularly at elevated temperatures. To this end, five key 

physicochemical properties were selected as predictive metrics to evaluate solvent suitability. These include 

thermal decomposition temperature (Td), melting temperature (Tm), viscosity (μ), and the infinite dilution 

activity coefficients of methanol (𝛾𝑀𝑒𝑂𝐻
∞ ) and water (𝛾𝑊𝑎𝑡𝑒𝑟

∞ ). ILBERT was used to predict thermal and 

transport properties, while COSMO-RS and GNN-IL were employed to estimate solvation behavior. Given 

the unconventionally high temperatures required for the reaction path designed on the ILIMITED project, 

the reliability of the models under project-specific conditions remains uncertain. This report aims to validate 

methods for simulating solvent selection by comparing model predictions with available experimental data 

for selected ionic liquids (ILs). The analysis provides a basis for assessing the applicability of ILBERT, 

COSMO-RS, and GNN-IL supporting the subsequent stages of solvent screening and experimental 

validation. 

2 Description of the deliverable objective and the content 

2.1 Problem description 

The ILIMITED project aims to develop a breakthrough process for the hydrogenation of CO₂ to methanol 

with significantly enhanced single-pass conversion efficiency. While high temperatures (i.e. 513 K) favor the 

reaction kinetics, they still yield limited conversion rates (<20%) under conventional conditions (Kiss et al., 

2016). A promising strategy to overcome this thermodynamic limitation involves the in situ removal of 

reaction products (methanol and water) through selective liquid sorbents, thereby shifting the equilibrium 

toward greater methanol formation and potentially achieving conversions above 80%. 

To meet the requirements of this strategy, liquid sorbents must possess both high thermal and chemical 

stability at elevated temperatures and strong selectivity for methanol and water. However, only a few 

solvents exhibit these properties under the demanding reaction conditions. Among the most promising 

candidates are ionic liquids (ILs), due to their low vapor pressure, tunable molecular structure, and well-

known thermal resilience. The combination of a broad variety of cations and anions leads to a theoretically 

possible number of 1018 Ionic Liquids (Merck, 2025). Within this vast chemical space of ILs, at least 8 mi 

are considered to be synthesizable (Qiu et al., 2025; Venkatraman et al., n.d.). The experimental screening 

of ILs for most application can be exhaustive, expensive, and unfeasible if performed via experimental 

testing. Therefore, reliable computational screening tools are essential for narrowing down viable 

candidates. 

To identify suitable ILs, five key properties must be considered: 

• Thermal decomposition temperature (Td) – to ensure short-term stability at >513 K. 

• Melting point (Tm) – to guarantee a liquid phase at room temperature or startup conditions. 
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• Viscosity (μ) – to ensure process operability, particularly during startup. 

• Infinite dilution activity coefficients of methanol (𝛾𝑀𝑒𝑂𝐻
∞ ) and water (𝛾𝐻2𝑂

∞ ) – to assess solubility 

and selectivity under operational conditions. 

These properties are predicted using two advanced computational models: 

• ILBERT, a transformer-based deep learning model trained on ~8.5 million IL structures, predicts 

Td, Tm, and μ. 

• COSMO-RS, a quantum chemistry-based thermodynamic model, estimates 𝛾𝑀𝑒𝑂𝐻
∞   and 𝛾𝐻2𝑂

∞ .  

• GNN-IL, a machine learning model trained on experimental data, predicting 𝛾𝑀𝑒𝑂𝐻
∞   and 𝛾𝐻2𝑂

∞ . 

 

2.2 Objective 

 

The objective of this deliverable is to assess the reliability of two computational models ILBERT, COSMO-

RS, and GNN-IL in predicting key physicochemical and solubility data required for the screening of solvent 

candidates within the ILIMITED project. Specifically, ILBERT is evaluated for its ability to estimate the 

thermal decomposition temperature (Td), melting temperature (Tm), and viscosity (μ) of ionic liquids, while 

COSMO-RS and GNN-IL are assessed and compared for their accuracy in predicting the infinite dilution 

activity coefficients of methanol (𝛾𝑀𝑒𝑂𝐻
∞ )  and water (𝛾𝐻2𝑂

∞ ). The validation is performed through comparison 

with experimental data, aiming to determine the suitability of these models for guiding the selection of 

thermally stable, selective sorbents capable of operating under the high-temperature conditions targeted in 

ILIMITED. 

 

2.3 Methods 

2.3.1 ILBERT model 

To assist in the selection of thermally stable and low-viscosity ILs suitable for methanol and water sorption 

at elevated temperatures (up to 513 K), we employed the ILBERT (Ionic Liquid Bidirectional Encoder 

Representations from Transformers) model  (Qiu et al., 2025) via the ai4Solvent.com web platform (Cchen 

et al., 2025). It is worth mentioning that ILBERT was not  developed on this study, but it was applied for 

being the state-of-the-art chemical language model specifically designed for predicting multiple 

physicochemical and thermodynamic properties of ionic liquids. 

The ILBERT model was pre-trained on a dataset comprising over 8.3 million IL-like molecular structures 

and subsequently fine-tuned on curated datasets for twelve key IL properties, including melting point, 

thermal decomposition temperature, and viscosity. The model utilizes transformer-based deep learning 

architecture, optimized through SMILES-based chemical representations and augmented with advanced 

tokenization schemes to enhance property-specific predictions (Qiu et al., 2025).  

The ILs’ SMILES were inserted within the ai4Solvent interface and the model provided rapid estimations of 

the short-term thermal decomposition temperature, normal melting point, and viscosity at room temperature. 

These data were compared with available experimental data to evaluate their suitability for use in IL 
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screening. The current models do not provide estimations for chemical stability (e.g., reactivity) or long-term 

thermal stability. These aspects are expected to be addressed in future stages of the ILIMITED project. This 

is particularly challenging since experimental data is limited for these properties, in the order of less than a 

hundred data points. We are currently exploring multi-task machine learning approaches to enable 

predictions that can be used as first indicators even in such low-data regimes. 

2.3.2 COSMO-RS 

The COSMO-RS (Conductor-like Screening Model for Real Solvents) model (Diedenhofen & Klamt, 2010; 

Eckert & Klamt, 2002; Klamt, 1995) was employed in this study to predict infinite dilution activity coefficients 

of methanol (𝛾𝑀𝑒𝑂𝐻
∞ )  and water (𝛾𝐻2𝑂

∞ ). This model combines quantum chemical calculations with statistical 

thermodynamics to estimate thermodynamic properties of liquid mixtures, treating molecular interactions 

through the concept of surface charge densities (σ-profiles). This information represents the polarity 

distribution over ions’ surface. COSMO-RS uses these profiles to compute interaction energies between 

solute and solvent surfaces. By statistically averaging these interactions, the model estimates the chemical 

potential of the solute, from which the activity coefficient 𝛾∞ is derived. Lower 𝛾∞ values correspond to 

higher solubility, enabling efficient screening of selective solvents.   

All geometry optimizations and charge density calculations were performed with the software package 

TURBOMOLE (TURBOMOLE, 2019), through its interface TMoleX v.4.5 (Steffen et al., 2010), using density 

functional theory (DFT) with the BP86 functional and the triple zeta valence polarization (def-TZVP) basis 

set (Steffen et al., 2010). The configuration of those quantum chemistry calculations corresponds to that of 

the “BP-TZVP_25” parametrization of COSMO-RS, available in the software package COSMOTherm v.25 

(Dassault Systèmes., 2021). This parametrization presents other advantages over classical COSMO-RS 

level DMOL3, such as improvements in the hydrogen bonding and van der Waals dispersion term and a 

correction for residual dielectric charge (RDC) (Grimme et al., 2010; Paduszyński, 2018).  

The charge density distribution for ions was calculated separately for each ionic species. This means that 

sigma profiles for neutral and ionic species were determined individually. This approach reduces the number 

of possible conformers and generally yields high accuracy, especially for dissociated species (Klamt et al., 

2010).  

The COSMO-RS model relies on a set of universal parameters derived from the regression of large datasets, 

primarily based on room-temperature properties of molecular systems. Although the model includes 

temperature-dependent terms, its reliability is inherently linked to the domain of the data used for parameter 

fitting. Therefore, when extrapolated to high temperatures, the model may exhibit increased deviations due 

to the lack of high-temperature reference data in its parametrization. 

For this reason, the present study critically evaluates the applicability and accuracy of COSMO-RS in 

predicting methanol and water activity coefficients at elevated temperatures. By benchmarking model 

predictions against experimental or reference data where available, we aim to assess the extent to which 

COSMO-RS can be reliably used for solvent screening in high-temperature catalytic systems.  

2.3.3 GNN-IL 

The GNN-IL (graph neural network for ionic liquids) model (Rittig et al., 2023) was further developed and 

used in this study to predict infinite dilution activity coefficients of methanol (𝛾𝑀𝑒𝑂𝐻
∞ )  and water (𝛾𝐻2𝑂

∞ ). The 

model thus serves as an alternative to COSMO-RS.  
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GNN-IL is a machine learning model that predicts the properties of interest directly from a graph 

representation of ionic liquids and solutes. Specifically, the molecules are represented as graphs with atoms 

a as nodes and bonds as edges. Then, the GNN extracts structural information from the molecular graph 

by applying graph convolutional layers. This results in a continuous vector representation of molecules, 

referred to as molecular fingerprints, which can then be used as input to a multilayer perceptron for property 

prediction. In the GNN-IL, the molecular fingerprint of the IL and of the solute (i.e., water or ethanol) are 

concatenated together with the value for the temperature, and then the multilayer perceptron provides 

infinite dilution activity coefficient predictions. 

The GNN-IL model learns directly from experimental data. Here, we used the data set of infinite dilution 

activity coefficients at varying temperatures of solutes in ILs and deep eutectic solvents published by (Li et 

al., 2022), which comprises about 52,000 experimental data points for 252 ILs and 112 solvents in a 

temperature range from 288.15 K to 428.15 K. The GNN-IL model thus learns from a diverse set of ILs.  

 

2.4 Validation of ILBERT 

2.4.1 Short-term thermal decomposition temperature (Td)  

The performance of ILBERT in predicting the short-term thermal decomposition temperature of ionic liquids 

was evaluated against experimental data from the literature (Cao & Mu, 2014), as shown in Figure 1. The 

model exhibits a strong correlation with the reference values, indicating its general reliability in estimating 

thermal stability. 

However, a tendency to underpredict Td values is observed, as most data points lie below the identity line. 

This systematic deviation suggests that, in practical scenarios, the actual thermal stability of candidate ILs 

may be higher than the predicted values. From a screening perspective, this conservative bias may be 

advantageous: ILs predicted to meet a minimum Td threshold are likely to perform even better 

experimentally. Therefore, while this deviation should be acknowledged, it does not disqualify ILBERT for 

screening purposes. 

Moreover, the error bars generated by the model appear underestimated or overly narrow, as a substantial 

number of experimental values fall outside the reported confidence intervals. Despite this, the majority of 

predictions remain within ±50 K of the experimental values, which can be considered acceptable for early-

stage screening. Larger deviations were primarily associated with ILs containing less common functional 

groups, such as amino-carboxylate moieties (Figure 1), highlighting a possible limitation in the training data 

coverage of the model. 
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Figure 1. Validation of ILBERT AI for the prediction of ILs’ short term thermal decomposition temperature. 

2.4.2 Validation of melting temperature (Tm)  

Figure 2 presents the comparison between ILBERT-predicted melting temperatures and experimental data 

compiled from a range of sources (Abranches et al., 2019; Ahmed et al., 2018; Bouarab et al., 2020; Calvar 

et al., 2013; Domańska et al., 2012; Domańska, Okuniewska, et al., 2015; Domańska, Roguszewska, et al., 

2015; Fadeeva et al., 2020; Fernandez et al., 2017; Huang et al., 2018; Khan et al., 2017; Królikowska et 

al., 2019; Kurzin et al., 2016; Lazzús, 2012; Nakamoto & Watanabe, 2007; Neves et al., 2013; Parajó et al., 

2018; Parsana et al., 2023; Simulations, n.d.). Unlike the Td predictions, ILBERT does not exhibit a 

systematic bias for melting temperature. Again, predicted values typically fall within a ±50 K range from 

experimental measurements, which is acceptable for high-throughput screening purposes. Nonetheless, 

the narrow error margins may not fully reflect the actual prediction uncertainty, particularly for ionic liquids 

with amino carboxylate structures. 
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Figure 2: Validation of ILBERT AI for the prediction of ILs’ melting point. 

2.4.3 Validation of viscosity (μ) 

The model’s ability to estimate room-temperature viscosities of ionic liquids is shown in Figure 3. ILBERT 

adequately reproduces the overall trend in the experimental data, confirming its utility for screening ILs with 

desirable viscosity ranges. 

While the agreement is reasonable for ILs with moderate viscosities, the model tends to show higher 

deviations in the high-viscosity regime. This is expected, as viscosity is highly sensitive to subtle structural 

features, and the range of reported viscosities spans several orders of magnitude. Despite this, the model’s 

predictions remain qualitatively useful, enabling the identification of ILs that are significantly too viscous or, 

conversely, promising in terms of fluidity. 
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Figure 3: Validation of ILBERT AI for the prediction of ILs’ viscosity. 

 

2.5 Validation of COSMO-RS 

To validate the activity coefficient predictions of COSMO-RS and GNN-IL for the application at hand, about 

1,500 experimental data points were acquired from the dataset published by (Li et al., 2022); notably, most 

of these data points originate from the NIST ILThermo databank (Dong et al., 2007). Specifically, infinite 

dilution activity coefficients of methanol or water in several ILs were collected at temperatures ranging from 

283 K to 423 K. Figure 4 shows that most data acquired are within 313 K and 373 K range. Less than 4.5% 

of experimental data were found at temperatures above 383 K, indicating that it is difficult to validate the 

model at the operational temperature (513 K). 
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Figure 4. Activity coefficient data dispersion throughout different temperature ranges. 

 

Figure 5 and Figure 6 present the comparison between experimental data and COSMO-RS and GNN-IL 

predictions for the infinite dilution activity coefficients of methanol (𝛾𝑀𝑒𝑂𝐻
∞ ) and water (𝛾𝐻2𝑂

∞ ) in various ionic 

liquids over a range of temperatures. COSMO-RS systematically overestimated 𝛾𝑀𝑒𝑂𝐻
∞  and 𝛾𝐻2𝑂

∞ , which 

resulted in an overall high quantitative deviation of roughly one order of magnitude compared to 

experimental data. Since the model was consistent on this overestimation, it is able to capture the relative 

trends of IDACS across different ILs. This behavior holds for both solutes, with water predictions showing 

slightly lower variance and stronger correlation. The ability of COSMO-RS to reproduce trend behavior trend 

across temperatures ranging from 283 K to 433 K (~150 K) suggests that the model can be reasonably 

extrapolated to the ILIMITED operational temperature of 513 K. Consequently, COSMO-RS should be 

considered at least as a qualitative suitable tool for the screening ionic liquids, as solvents for methanol 

and water, expected reaction condition of ILIMITED project. 

As part of the experimental data was used for training the GNN-IL, we distinguish between training and 

validation (Train/Val) data and test data, which was not used during training and thus allows to assess the 

predictive capabilities of the model. Figure 5 and Figure 6  show that GNN-IL provides highly accurate 

predictions, as is also emphasized by the mean absolute errors (MAEs) and coefficients of determination 

(R2) shown in the respective figures. For methanol, we find that these accuracy differences are also reflected 

in the Spearman rank correlation coefficients (ρ), which indicate the model capabilities to correctly rank ILs 

against each other and is thus highly relevant for screening purposes. Specifically, the GNN-IL exhibits a ρ 

value of 0.98 compared to a ρ value of 0.87 of COSMO-RS. Interestingly, for water, the GNN-IL and 

COSMO-RS models have similar ρ values of 0.97 versus 0.96, although the GNN is much more accurate 

in absolute values. Thus, for water, COSMO-RS consistently captures the relative trends across different 

ILs with predictions mostly within the same order of magnitude of experimental results. For methanol, in 

contrast, the ranking capabilities of COSMO-RS are lower, however, still in a reasonable range for 

screening. The GNN-IL shows high ranking capabilities for both water and methanol, indicating it can be a 

quantitative suitable tool for the screening ionic liquids.  
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Both models still require to be validated at the operational temperatures of the Ilimited project (513 K) of 

which very few data are available in the open literature. However, the ability of COSMO-RS and GNN-IL to 

reproduce trend behavior across temperatures ranging from 283 K to 433 K (~150 K) suggests that these 

models can provide highly useful predictions for screening ionic liquids for the ILIMITED project. It should 

be noted that extrapolation to the expected ILIMITED reactor temperature of 513 K is required, so 

experimental validation of the identified IL candidates – as planned in the upcoming work packages – will 

be crucial.  
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Figure 5: Validation of COSMO-RS and GNN-IL for the prediction of methanol infinite dilution activity 

coefficients  in ILs (𝛾𝑀𝑒𝑂𝐻
∞ ) at temperatures ranging from (283 K – 433 K) 
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Figure 6: Validation of COSMO-RS and GNN-IL for the prediction of water infinite dilution activity coefficients 

in ILs (𝛾𝐻2𝑂
∞ ) at temperatures ranging from 293 K to 433 K. 

Conclusion 

This deliverable 1.1 (WP1) presents the validation of ILBERT, COSMO-RS, and GNN-IL as predictive tools 

for screening ionic liquid  under the specific requirements of the ILIMITED project. Despite the challenging 

operational conditions, particularly high temperatures, the models demonstrated consistent trends and 

reasonable agreement with experimental data across the selected properties. 

ILBERT showed adequate predictive capability for thermal decomposition temperature, melting point, and 

viscosity, with deviations within acceptable ranges for early-stage screening. COSMO-RS, while 

systematically overestimating the infinite dilution activity coefficients of methanol and water, maintained 

strong qualitative alignment with experimental trends at a reasonable temperature range (~150 K), GNN-IL 

exhibits high qualitative accuracies for activity coefficient predictions and enables ranking of ILs, which is 

highly useful for IL screening as solvents for methanol and water at operational temperature (513 K).  
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Overall, the models are considered sufficiently reliable for supporting the identification and prioritization of 

IL candidates within WP1. The application of ILBERT, COSMO-R, and GNN-IL on IL screening should 

reduce experimental workload, and optimum selection of best candidates, which should be experimentally 

assessed on the ILIMITED, contributing meaningfully to the broader objectives of ILIMITED’s work 

packages. 
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