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1 Executive summary

1.1 Description of the deliverable content and purpose

This deliverable presents the validation of three computational models, ILBERT (ai4solvent), COnductor like
Screening MOdel for Realistic Solvents (COSMO-RS), and GNN-IL (graph neural network for ionic liquids)
used for screening solvent candidates within the ILIMITED project (Work Package 1). The overarching goal
is to identify solvents capable of selectively absorbing methanol and water under the demanding conditions
of the CO, hydrogenation reaction, particularly at elevated temperatures. To this end, five key
physicochemical properties were selected as predictive metrics to evaluate solvent suitability. These include
thermal decomposition temperature (Tq), melting temperature (Tm), viscosity (u), and the infinite dilution
activity coefficients of methanol (ys.on) and water (yiyqer)- ILBERT was used to predict thermal and
transport properties, while COSMO-RS and GNN-IL were employed to estimate solvation behavior. Given
the unconventionally high temperatures required for the reaction path designed on the ILIMITED project,
the reliability of the models under project-specific conditions remains uncertain. This report aims to validate
methods for simulating solvent selection by comparing model predictions with available experimental data
for selected ionic liquids (ILs). The analysis provides a basis for assessing the applicability of ILBERT,
COSMO-RS, and GNN-IL supporting the subsequent stages of solvent screening and experimental
validation.

2 Description of the deliverable objective and the content

21 Problem description

The ILIMITED project aims to develop a breakthrough process for the hydrogenation of CO, to methanol
with significantly enhanced single-pass conversion efficiency. While high temperatures (i.e. 513 K) favor the
reaction kinetics, they still yield limited conversion rates (<20%) under conventional conditions (Kiss et al.,
2016). A promising strategy to overcome this thermodynamic limitation involves the in situ removal of
reaction products (methanol and water) through selective liquid sorbents, thereby shifting the equilibrium
toward greater methanol formation and potentially achieving conversions above 80%.

To meet the requirements of this strategy, liquid sorbents must possess both high thermal and chemical
stability at elevated temperatures and strong selectivity for methanol and water. However, only a few
solvents exhibit these properties under the demanding reaction conditions. Among the most promising
candidates are ionic liquids (ILs), due to their low vapor pressure, tunable molecular structure, and well-
known thermal resilience. The combination of a broad variety of cations and anions leads to a theoretically
possible number of 1018 lonic Liquids (Merck, 2025). Within this vast chemical space of ILs, at least 8 mi
are considered to be synthesizable (Qiu et al., 2025; Venkatraman et al., n.d.). The experimental screening
of ILs for most application can be exhaustive, expensive, and unfeasible if performed via experimental
testing. Therefore, reliable computational screening tools are essential for narrowing down viable
candidates.

To identify suitable ILs, five key properties must be considered:
e Thermal decomposition temperature (Ta) — to ensure short-term stability at >513 K.

e Melting point (Tm) — to guarantee a liquid phase at room temperature or startup conditions.
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e Viscosity (u) — to ensure process operability, particularly during startup.

e Infinite dilution activity coefficients of methanol (yx.ox) and water (yy,,) — to assess solubility
and selectivity under operational conditions.

These properties are predicted using two advanced computational models:

e ILBERT, a transformer-based deep learning model trained on ~8.5 million IL structures, predicts
Td, Tm, and p.

e COSMO-RS, a quantum chemistry-based thermodynamic model, estimates yy.on and yg,o-

e GNN-IL, a machine learning model trained on experimental data, predicting vy and y;7o-

2.2 Objective

The objective of this deliverable is to assess the reliability of two computational models ILBERT, COSMO-
RS, and GNN-IL in predicting key physicochemical and solubility data required for the screening of solvent
candidates within the ILIMITED project. Specifically, ILBERT is evaluated for its ability to estimate the
thermal decomposition temperature (Tq), melting temperature (Tm), and viscosity (u) of ionic liquids, while
COSMO-RS and GNN-IL are assessed and compared for their accuracy in predicting the infinite dilution
activity coefficients of methanol (yy.0n) and water (yg,). The validation is performed through comparison
with experimental data, aiming to determine the suitability of these models for guiding the selection of
thermally stable, selective sorbents capable of operating under the high-temperature conditions targeted in
ILIMITED.

2.3 Methods

231 ILBERT model

To assist in the selection of thermally stable and low-viscosity ILs suitable for methanol and water sorption
at elevated temperatures (up to 513 K), we employed the ILBERT (lonic Liquid Bidirectional Encoder
Representations from Transformers) model (Qiu et al., 2025) via the ai4Solvent.com web platform (Cchen
et al., 2025). It is worth mentioning that ILBERT was not developed on this study, but it was applied for
being the state-of-the-art chemical language model specifically designed for predicting multiple
physicochemical and thermodynamic properties of ionic liquids.

The ILBERT model was pre-trained on a dataset comprising over 8.3 million IL-like molecular structures
and subsequently fine-tuned on curated datasets for twelve key IL properties, including melting point,
thermal decomposition temperature, and viscosity. The model utilizes transformer-based deep learning
architecture, optimized through SMILES-based chemical representations and augmented with advanced
tokenization schemes to enhance property-specific predictions (Qiu et al., 2025).

The ILs’ SMILES were inserted within the ai4Solvent interface and the model provided rapid estimations of
the short-term thermal decomposition temperature, normal melting point, and viscosity at room temperature.
These data were compared with available experimental data to evaluate their suitability for use in IL
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screening. The current models do not provide estimations for chemical stability (e.g., reactivity) or long-term
thermal stability. These aspects are expected to be addressed in future stages of the ILIMITED project. This
is particularly challenging since experimental data is limited for these properties, in the order of less than a
hundred data points. We are currently exploring multi-task machine learning approaches to enable
predictions that can be used as first indicators even in such low-data regimes.

2.3.2 COSMO-RS

The COSMO-RS (Conductor-like Screening Model for Real Solvents) model (Diedenhofen & Klamt, 2010;
Eckert & Klamt, 2002; Klamt, 1995) was employed in this study to predict infinite dilution activity coefficients
of methanol (y.on) and water (y5, ). This model combines quantum chemical calculations with statistical
thermodynamics to estimate thermodynamic properties of liquid mixtures, treating molecular interactions
through the concept of surface charge densities (o-profiles). This information represents the polarity
distribution over ions’ surface. COSMO-RS uses these profiles to compute interaction energies between
solute and solvent surfaces. By statistically averaging these interactions, the model estimates the chemical
potential of the solute, from which the activity coefficient y® is derived. Lower y*® values correspond to
higher solubility, enabling efficient screening of selective solvents.

All geometry optimizations and charge density calculations were performed with the software package
TURBOMOLE (TURBOMOLE, 2019), through its interface TMoleX v.4.5 (Steffen et al., 2010), using density
functional theory (DFT) with the BP86 functional and the triple zeta valence polarization (def-TZVP) basis
set (Steffen et al., 2010). The configuration of those quantum chemistry calculations corresponds to that of
the “BP-TZVP_25" parametrization of COSMO-RS, available in the software package COSMOTherm v.25
(Dassault Systemes., 2021). This parametrization presents other advantages over classical COSMO-RS
level DMOL3, such as improvements in the hydrogen bonding and van der Waals dispersion term and a
correction for residual dielectric charge (RDC) (Grimme et al., 2010; Paduszynski, 2018).

The charge density distribution for ions was calculated separately for each ionic species. This means that
sigma profiles for neutral and ionic species were determined individually. This approach reduces the number
of possible conformers and generally yields high accuracy, especially for dissociated species (Klamt et al.,
2010).

The COSMO-RS model relies on a set of universal parameters derived from the regression of large datasets,
primarily based on room-temperature properties of molecular systems. Although the model includes
temperature-dependent terms, its reliability is inherently linked to the domain of the data used for parameter
fitting. Therefore, when extrapolated to high temperatures, the model may exhibit increased deviations due
to the lack of high-temperature reference data in its parametrization.

For this reason, the present study critically evaluates the applicability and accuracy of COSMO-RS in
predicting methanol and water activity coefficients at elevated temperatures. By benchmarking model
predictions against experimental or reference data where available, we aim to assess the extent to which
COSMO-RS can be reliably used for solvent screening in high-temperature catalytic systems.

233 GNN-IL

The GNN-IL (graph neural network for ionic liquids) model (Rittig et al., 2023) was further developed and
used in this study to predict infinite dilution activity coefficients of methanol (yy.oy) and water (y; o). The
model thus serves as an alternative to COSMO-RS.
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GNN-IL is a machine learning model that predicts the properties of interest directly from a graph
representation of ionic liquids and solutes. Specifically, the molecules are represented as graphs with atoms
a as nodes and bonds as edges. Then, the GNN extracts structural information from the molecular graph
by applying graph convolutional layers. This results in a continuous vector representation of molecules,
referred to as molecular fingerprints, which can then be used as input to a multilayer perceptron for property
prediction. In the GNN-IL, the molecular fingerprint of the IL and of the solute (i.e., water or ethanol) are
concatenated together with the value for the temperature, and then the multilayer perceptron provides
infinite dilution activity coefficient predictions.

The GNN-IL model learns directly from experimental data. Here, we used the data set of infinite dilution
activity coefficients at varying temperatures of solutes in ILs and deep eutectic solvents published by (Li et
al.,, 2022), which comprises about 52,000 experimental data points for 252 ILs and 112 solvents in a
temperature range from 288.15 K to 428.15 K. The GNN-IL model thus learns from a diverse set of ILs.

24 Validation of ILBERT

241 Short-term thermal decomposition temperature (Td)

The performance of ILBERT in predicting the short-term thermal decomposition temperature of ionic liquids
was evaluated against experimental data from the literature (Cao & Mu, 2014), as shown in Figure 1. The
model exhibits a strong correlation with the reference values, indicating its general reliability in estimating
thermal stability.

However, a tendency to underpredict Td values is observed, as most data points lie below the identity line.
This systematic deviation suggests that, in practical scenarios, the actual thermal stability of candidate ILs
may be higher than the predicted values. From a screening perspective, this conservative bias may be
advantageous: ILs predicted to meet a minimum Tq threshold are likely to perform even better
experimentally. Therefore, while this deviation should be acknowledged, it does not disqualify ILBERT for
screening purposes.

Moreover, the error bars generated by the model appear underestimated or overly narrow, as a substantial
number of experimental values fall outside the reported confidence intervals. Despite this, the majority of
predictions remain within 50 K of the experimental values, which can be considered acceptable for early-
stage screening. Larger deviations were primarily associated with ILs containing less common functional
groups, such as amino-carboxylate moieties (Figure 1), highlighting a possible limitation in the training data
coverage of the model.
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Figure 1. Validation of ILBERT Al for the prediction of ILs’ short term thermal decomposition temperature.

24.2 Validation of melting temperature (Tm)

Figure 2 presents the comparison between ILBERT-predicted melting temperatures and experimental data
compiled from a range of sources (Abranches et al., 2019; Ahmed et al., 2018; Bouarab et al., 2020; Calvar
et al., 2013; Domanska et al., 2012; Domanska, Okuniewska, et al., 2015; Domanska, Roguszewska, et al.,
2015; Fadeeva et al., 2020; Fernandez et al., 2017; Huang et al., 2018; Khan et al., 2017; Krélikowska et
al., 2019; Kurzin et al., 2016; Lazzus, 2012; Nakamoto & Watanabe, 2007; Neves et al., 2013; Paraj6 et al.,
2018; Parsana et al., 2023; Simulations, n.d.). Unlike the Ty predictions, ILBERT does not exhibit a
systematic bias for melting temperature. Again, predicted values typically fall within a +50 K range from
experimental measurements, which is acceptable for high-throughput screening purposes. Nonetheless,
the narrow error margins may not fully reflect the actual prediction uncertainty, particularly for ionic liquids
with amino carboxylate structures.
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Figure 2: Validation of ILBERT Al for the prediction of ILs’ melting point.

243 Validation of viscosity (u)

The model’s ability to estimate room-temperature viscosities of ionic liquids is shown in Figure 3. ILBERT
adequately reproduces the overall trend in the experimental data, confirming its utility for screening ILs with
desirable viscosity ranges.

While the agreement is reasonable for ILs with moderate viscosities, the model tends to show higher
deviations in the high-viscosity regime. This is expected, as viscosity is highly sensitive to subtle structural
features, and the range of reported viscosities spans several orders of magnitude. Despite this, the model’s
predictions remain qualitatively useful, enabling the identification of ILs that are significantly too viscous or,
conversely, promising in terms of fluidity.
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Figure 3: Validation of ILBERT Al for the prediction of ILs’ viscosity.

2.5 Validation of COSMO-RS

To validate the activity coefficient predictions of COSMO-RS and GNN-IL for the application at hand, about
1,500 experimental data points were acquired from the dataset published by (Li et al., 2022); notably, most
of these data points originate from the NIST ILThermo databank (Dong et al., 2007). Specifically, infinite
dilution activity coefficients of methanol or water in several ILs were collected at temperatures ranging from
283 K to 423 K. Figure 4 shows that most data acquired are within 313 K and 373 K range. Less than 4.5%
of experimental data were found at temperatures above 383 K, indicating that it is difficult to validate the
model at the operational temperature (513 K).
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Figure 5 and Figure 6 present the comparison between experimental data and COSMO-RS and GNN-IL
predictions for the infinite dilution activity coefficients of methanol (y.ox) and water (v ) in various ionic
liquids over a range of temperatures. COSMO-RS systematically overestimated yy.on and yg,o, Which
resulted in an overall high quantitative deviation of roughly one order of magnitude compared to
experimental data. Since the model was consistent on this overestimation, it is able to capture the relative
trends of IDACS across different ILs. This behavior holds for both solutes, with water predictions showing
slightly lower variance and stronger correlation. The ability of COSMO-RS to reproduce trend behavior trend
across temperatures ranging from 283 K to 433 K (~150 K) suggests that the model can be reasonably
extrapolated to the ILIMITED operational temperature of 513 K. Consequently, COSMO-RS should be
considered at least as a qualitative suitable tool for the screening ionic liquids, as solvents for methanol
and water, expected reaction condition of ILIMITED project.

As part of the experimental data was used for training the GNN-IL, we distinguish between training and
validation (Train/Val) data and test data, which was not used during training and thus allows to assess the
predictive capabilities of the model. Figure 5 and Figure 6 show that GNN-IL provides highly accurate
predictions, as is also emphasized by the mean absolute errors (MAEs) and coefficients of determination
(R2) shown in the respective figures. For methanol, we find that these accuracy differences are also reflected
in the Spearman rank correlation coefficients (p), which indicate the model capabilities to correctly rank ILs
against each other and is thus highly relevant for screening purposes. Specifically, the GNN-IL exhibits a p
value of 0.98 compared to a p value of 0.87 of COSMO-RS. Interestingly, for water, the GNN-IL and
COSMO-RS models have similar p values of 0.97 versus 0.96, although the GNN is much more accurate
in absolute values. Thus, for water, COSMO-RS consistently captures the relative trends across different
ILs with predictions mostly within the same order of magnitude of experimental results. For methanol, in
contrast, the ranking capabilities of COSMO-RS are lower, however, still in a reasonable range for
screening. The GNN-IL shows high ranking capabilities for both water and methanol, indicating it can be a
quantitative suitable tool for the screening ionic liquids.
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Both models still require to be validated at the operational temperatures of the llimited project (513 K) of
which very few data are available in the open literature. However, the ability of COSMO-RS and GNN-IL to
reproduce trend behavior across temperatures ranging from 283 K to 433 K (~150 K) suggests that these
models can provide highly useful predictions for screening ionic liquids for the ILIMITED project. It should
be noted that extrapolation to the expected ILIMITED reactor temperature of 513K is required, so
experimental validation of the identified IL candidates — as planned in the upcoming work packages — will
be crucial.
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Figure 5: Validation of COSMO-RS and GNN-IL for the prediction of methanol infinite dilution activity
coefficients in ILs (yy.0n) at temperatures ranging from (283 K — 433 K)
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Figure 6: Validation of COSMO-RS and GNN-IL for the prediction of water infinite dilution activity coefficients
in ILs (yg,0) at temperatures ranging from 293 K to 433 K.

Conclusion

This deliverable 1.1 (WP1) presents the validation of ILBERT, COSMO-RS, and GNN-IL as predictive tools
for screening ionic liquid under the specific requirements of the ILIMITED project. Despite the challenging
operational conditions, particularly high temperatures, the models demonstrated consistent trends and
reasonable agreement with experimental data across the selected properties.

ILBERT showed adequate predictive capability for thermal decomposition temperature, melting point, and
viscosity, with deviations within acceptable ranges for early-stage screening. COSMO-RS, while
systematically overestimating the infinite dilution activity coefficients of methanol and water, maintained
strong qualitative alignment with experimental trends at a reasonable temperature range (~150 K), GNN-IL
exhibits high qualitative accuracies for activity coefficient predictions and enables ranking of ILs, which is
highly useful for IL screening as solvents for methanol and water at operational temperature (513 K).
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Overall, the models are considered sufficiently reliable for supporting the identification and prioritization of
IL candidates within WP1. The application of ILBERT, COSMO-R, and GNN-IL on IL screening should
reduce experimental workload, and optimum selection of best candidates, which should be experimentally
assessed on the ILIMITED, contributing meaningfully to the broader objectives of ILIMITED’s work
packages.
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